CHAPTER

EIGHT
CONCURRENT PROCESSES

The work of George Milne and Robin Milner is an attempt to describe a math-
ematical semantics for concurrent computation and communication. Their goal
is a formal calculus of concurrent computation, much as the lambda calculus is
a formal calculus of uniprocess computation. They are trying to establish the
meaning of programs, not to provide a tool for programming per se.

From the title of their paper, “Concurrent Processes and their Syntax,”
[Milne 79] we adopt the name “Concurrent Processes” for the Milne-Milner
model. Their model has explicit processes that communicate synchronously
and bidirectionally over labeled channels. The number of processes and their
communication connections can change dynamically. Most of this work is con-
cerned with proving that the semantics of their model is specific and un-
ambiguous and that the communication operations provided by the model
form an “algebra” with the right properties. This mathematics is heavily de-
pendent on the theory of sets, powerdomains, and functions; it is beyond
the scope of this book. Instead, we find their formalism interesting in its
own right. We develop examples of that formalism to illustrate its power,
reassured by the understanding that the resulting system is mathematically
correct.*

* This chapter is perhaps the most difficult in the book. It is not essential for achieving
an understanding of later material and can be skipped at first reading.

86

CONCURRENT PROCESSES 87

Processes and Nets

The fundamental processing objects of the Milne-Milner model are processes.
Formally, a process is a set of ports. Each port is a triple, formed of a name, a
value, and a continuation. We write the port with name «, value u, and continua-
tion f as a:(u,f). Two ports are complementary if their names match, one “plain”
and the other “barred.” Thus, ports with names a and @ are complementary.
Complementary ports can be “joined,” providing a path for their processes to
communicate.

Milne and Milner have a graphical notation to illustrate processes and com-
munication paths. Figure 8-1 shows the graphic for process r. This process has
two ports, a and (. Port o has value u; and continuation f;. Similarly, 3’s value
is up and its continuation, fs.

When two processes communicate (compose), they simultaneously exchange
information and reconfigure themselves into new processes. Processes com-
municate through complementary ports. If r communicates through the port
a, it sends the value u; on the “communication line.” It simultaneously re-
ceives a value on that line. Let us call that value v;. The value v; be-
comes the (single) argument to the continuation f;. The result of this ap-
plication describes the new process (or set of processes). These continua-
tions capture the state of the process, much as variables and the program
counter capture the state of a conventional program. These notions of state
and bidirectional communication are a formal echo of the ideas of Exchange
Functions.

Milne and Milner use lambda expressions (Section 1-2) to describe the func-
tions f; and fy. They use the lambda calculus because it is a standard for
mathematical description of functions, not because it has properties particularly
amenable to programming. The important feature of the continuations f; and f,
is that they evaluate to objects that describe processes (or sets of processes).

In Concurrent Processes, communicating processes send each other a value.
This value can either include significant information or merely be a synchroniza-
tion signal. Thus, there are four possible combinations of value transmission in
communication: both processes send a signal (pure synchronization); a process
receives a value, but sends a signal (input); a process sends a value, but receives
a signal (output); or both processes send and receive values (exchange).

Concurrent Processes and Exchange Functions (Chapter 7) are the only sys-
tems we study that provide simultaneous, bidirectional communication. Most

Figure 8-1 A process.

88 MODELS

Figure 8-2 A net of processes.

systems permit information transfer in only a single direction at a time. Even
Milne and Milner note that the transmission of information (as opposed to sig-
nal) in both directions is not used by any of their examples (though it is used
in one of ours). We surmise that bidirectional communication is included not so
much as a reflection of “reality” but only to make the formalism more elegant.

A group of processes can be composed into a net. From the perspective
of the external world, that net now acts (almost) like a single process. The
compositions of the net then fall into three classes: input, in which a value is
brought in from the outside environment; output, in which a value is sent to
the environment; and covert, in which information passes between the processes
internal to the net. Figure 8-2 shows the graphical description of a net of proc-
esses. The visible port names of a process characterize that process. This set
is called the sort of the process. Similarly, when a group of processes is com-
posed into a net, the port names externally visible from that net are the sort
of the net. One operation in the model allows hiding the internal port names
of the net.

In Concurrent Processes, the number of processes can grow without bound.
The model allows a single composition to create (in a stepwise fashion) an un-
bounded number of new processes. Since this is a mathematical model, infi-
nite sets are natural objects. The algebra of process composition determines
which computations may take place. A “run” of a Concurrent Process sys-
tem is thus the selection of one sequence of compositions from the many
possible.

CONCURRENT PROCESSES 89

Figure 8-3 A pair of processes.

Mathematics of Composition

Let us assume that we have a pair of processes, p; and ps, as diagrammed
in Figure 8-3. Their composition, pi|p2, is shown in Figure 8-4. Processes p;
and p2 connect through the complementary ports, v and 7. The composition
p1|p2 has five communication capabilities with the external environment: «, @,
B, 7, and 7. One of these is a:(u;, Aw.(f; (w))|p2). If this communication occurs,
then u; is sent to the environment and a value x is sent to p;. Process p; is
transformed into f;(x). This is called a renewal of p;. Process ps is unchanged
by this communication; it is then composed with the renewal of p;.

There is also the possibility of covert communication between p; and ps
through their ports 7 and 7. In that case, their composition also contains the
composition of fa(vs) and gs(uz). This is the result of exchanging the values vs
and us and applying the continuations to the values received.

As precise as they may appear to be, the diagrams are only illustrative of
the process composition relationship. The actual computation is specifically the
result computed by the equations that define the model. The most important of
these is the equation that defines process composition:*

Figure 8-4 The composition of p; and pa.

* In these examples we use the set comprehension operator {}. However, the objects are
powerdomains. To be technically correct we should use the powerdomain operators {}. A
powerdomain is a power set with a partial-ordering relation among its members [Smyth 78].

90 MODELS

plp’ = {p: (u, Av.(f(v)|p")) s.t. p: (u,f) € p} (1)
U {p: (0, W (pIf' (V) st s (U, F) € p'} (2)
U JLFW)IF () st s (u,f) € p,7a: (o, F) € p'} (3)

The first two lines of this equation define a composition with the external
environment. The first line, (1), specifies that process p is to be given a computing
step and the result composed with p’. Line (2) is the corresponding stepping
of p’. The final line, (3), describes the communication between p and p’: the
exchange of values and the recomposition of their respective continuations. This
is a synchronous exchange.

Milne and Milner also provide mechanisms for renaming labels and for re-
stricting label visibility, much as the lambda calculus provides a conversion for
the renaming of lambda variables. Renaming is easier to understand by analogy
to hardware design. Each process in the Milne-Milner model is like an integrated
circuit and each label is like a pin on that circuit. One would no more want every
« label on every process of type r to be connected than one would want every
pin 3 on every shift register to share a common wire. Renaming and restricting
visibility allow the correct connection of a process/label and its protection from
similarly described processes. One wants to be able to bundle a net of processes
together, secure that their internal connections cannot be “shorted” by an oddly
named external wire. Like Lynch and Fischer, Milne and Milner prove that the
behavior of a net of processes is indistinguishable from the behavior of a single
process. Without relabeling and hiding this would not be possible.

The operator || first composes two nets (or processes) and then restricts their
shared ports to be externally invisible.

Examples

In the following examples, we present the themes of Concurrent Processes with-
out becoming mired in the mathematical details of formal semantics. Our pro-
grams may appear to be forbiddingly symbolic. However, they are usually just
the lambda calculus expression of finite state automata or register automata.*
In our most complicated example, the card reader, we provide state-transition
diagrams of the modeled automata.

* Register automata are a variation of finite state automata in which registers that can
store integers become part of the automata state and are used in determining state transitions.
If the registers can store only a finite number of values, the resulting automata are still FSA;
if they can store unbounded values (with the “right kind” of operations on those values), the
automata are Turing-equivalent.

CONCURRENT PROCESSES 91

Figure 8-5 The initial state of the register.

Register A simple but interesting process in the Concurrent Processes model is
a register. We consider a register r. This register responds to two different signals,
set and get. Set takes the value sent and sets the register to that value, returning
a synchronization signal. Get ignores its input, sends the register’s value, and
regenerates the register to the same register. “Setting the register to the value”
is not exactly the correct description. Instead, sending a 5 to the register makes
the register become the thing that responds to get with a 5, and to set x by
becoming the thing that behaves like a register with value x. If the sequence of
communications

set 5, set 12, get, get, set 3, get

is received, the register replies to the first two get’s with 12, and the last get
with 3. The register responds to the set commands by sending a synchronization
pulse (®).

The register has ports set and get. Since it is meaningless to try to get the
value of the register before it has been set, the register initially has only the port
set. Figure 8-5 shows the initial state of the register. The register is

r = {set:(®, A\z.REG(z))}

where the definition of REG is:*

REG(z) =
{set:(®, AZ.REG(Z)),
get:(z, K(REG(2)))}

Evaluating REG(z) produces a process of two ports, set and get. Port set accepts
a value z' and regenerates the register; port get responds with the value z (the
value placed there by the last set) and regenerates the same register.

A typical sequence of communications with the register produces the register
states shown in Table 8-1. To assign to the register, processes use ports labeled
set; to retrieve the current value of the register, processes use ports labeled get.
Processes that share this register are composed with it.

* K is the constant combinator, AX.(Ay.xX). A constant function is a function that always
returns the same value. For example, f(x) = 5 is a constant function. The constant combinator
K constructs constant functions. What should the constant of these functions be? They take
the value given as the argument to K. So K(5) is a function whose value is always 5, \y.5.

92 MODELS

Table 8-1 Register states

Port Value New register Value sent
received state by register
Initial state r = {set: (®, \z.REG(2))}
set 5 = r = {set: (0, \Z.REG(Z)), ®
get: (5, Ay.REG(5))}
set 12 = r = {set: (0, \Z.REG(Z)), ®
get: (12, \v.REG(12))}
get ©) = r = {set: (®, \Z.REG(Z")), 12
get: (12, \v.REG(12))}
get ©) = r = {set: (®, \Z.REG(Z")), 12
get: (12, \v.REG(12))}
set 3 = r = {set: (0, \Z.REG(Z)), ®
get: (3, Ay.REG(3))}

Binary semaphore In the previous example, the register started with a single
port and quickly grew another. Our model of a binary semaphore is a process.
It generates and eliminates a port with each step. Synchronization is assured
because the semaphore has only a single legal port (P or V) at any time.

free = {P:(®, busy = {V:(©,
K(busy))} K(free))}

When the semaphore is free it has a single port whose continuation takes it to
the busy state; when it is busy it has a single port whose continuation takes
it to the free state. Processes request the semaphore through their own port
P; they release the semaphore through port V. The semaphore responds with a
synchronization signal only, not information. Like the register, this semaphore
uses the constant combinator K.

Theorem proving The Milne-Milner model allows the arbitrary growth (and
shrinkage) of the process net. As an example of the creation of new processes
in the Milne-Milner model, we examine a naive form of theorem proving over
the propositional calculus.* This program is a partial decision procedure for
tautologies in propositional logic. A tautology is a formula of propositional logic

* We direct the reader interested in the technology of automated theorem proving to Robin-
son [Robinson 79] or Loveland [Loveland 78].

CONCURRENT PROCESSES 93

(a well-formed formula or wff) that is true no matter what assignments are made
to its variables. Thus, the formula

(PAQ)V=(PAQ)

is a tautology.

The algorithm requires first transforming the wiff into conjunctive normal
form. A formula in conjunctive normal form is the “ANDing” (A) of a group of
formulas, each of which is the “ORing” (V) of a set of literals. A literal is either
a propositional variable X or its negation =X . For example, the formula

(PVQV-R) A (~PVR) A (Q)

is in conjunctive normal form. A theorem about propositional logic states that
every formula is equivalent to some formula in conjunctive normal form. We call
the literal =X the complement of X, and X the complement of =X . A clause is
a set of literals.

A pair of clauses, G and H, clash if there is some literal X such that X is
in G and the complement of X is in H. The fusion of these two clauses is the
clause

(G —{X}) U (H — {complement(X)})

For example, the fusion of the clauses:

{A,~B,E}
and
{-C,D,-E}
is the clause
{4,-B,~C,D}

A set of clauses grows if there are two clauses G and H in that set that clash.
The set of clauses is then extended to include the result of the fusion.

The resolution algorithm takes a wff, negates it, and converts it into conjunc-
tive normal form, revealing a clause structure. The algorithm then fuses pairs
of clauses until it generates the null clause (the clause with no literals). The
null clause indicates success; its appearance shows that the original formula is a
tautology.

Real theorem proving systems take great care to avoid doing the same fu-
sion repeatedly. However, we ignore this constraint in our simple program. Our
procedure is also incomplete; it does not necessarily recognize that a particular
formula is or is not a tautology. Instead, it continues processing, growing new
processes at each communication exchange.

In our theorem prover we represent each clause as a process. Each literal in
that clause is a port, with negative literals as the barred ports. At each port the

94 MODELS

Figure 8-6 The resolution clause processes.

value offered is the clause, less the port literal. Each process regenerates both
itself and a new process. This new process’s program expresses the fusion of the
two clauses. This process is added to the net and commences communicating with
the other clauses. The net thereby grows. In general, the clause G={ey, es,...ep}
offers the communications

Clause(G) =
G={})-

{answer:(Done, ®)},
{ e:(G—{e}, AG'.Clause (G’ U (G—e))) | Clause(G) s.t. e € G }

where —e offers communication on € (not shown in the code). Clause spawns two
processes for the resolvent.* We present a simple example of the theorem prover.
Consider the following well-formed formula of the propositional calculus:

(P2Q)A(QDR)) D (POR)

We want to show that this formula is a tautology. We transform its negation into
conjunctive normal form, yielding

("PVQ) A (-QVR) A (P) A (—R)
which is rewritten in our set notation as

{=P,Q} {-Q, R} {P}{-R}.

The initial processes for the computation (illustrated in Figure 8-6) are

* The form p—z,y is an abbreviation for if p then X else y. This is a shorthand for
conditionals (Section 1-2).

CONCURRENT PROCESSES 95

Figure 8-7 An intermediate resolution state.

pi={P-({Q}, Au. ...)
Q:({-P}, Au)}
p2= {Q:({R}, Au. ...)
R:({-Q}, Au)
ps= {P:{({}, Au. ...)}
(

pa= {R:({}, Au. ...)}

Each function regenerates its host process and a new process representing the
fusion of its covert communication. If this clause is empty, instead of attempting
to continue covert communication, that process has a port to relate the success
of the process to the external environment. We leave completing the details of
these functions as an exercise (Exercise 8-4).

Figure 8-7 shows a possible state of the net after several computational steps.
Even if the original formula is a tautology, there is no guarantee that pi| p2| p3| pa
ever communicates with the external environment.

Card reader Our final example of modeling with Concurrent Processes is the
description of the interacting parts of a card reading system [Milne 78]. This
example is particularly interesting because it models a system composed of both
hardware and software components.

96 MODELS

Table 8-2 The status register word

Bit Status when set

15 Error.

14 Done reading. Another card may be demanded.
9 Card is being read.
8 Reader device off-line.

6 If set when status register loaded, allows the setting of bits 14 and 15 to cause a
driver interrupt.

0 If set when status register loaded, causes driver to signal reader to begin reading.

The card reader is a Digital CR11. This reader is used in the PDP-11 series
of computers. It follows the PDP-11 system philosophy of “peripheral device
control through assignment to and interrogation of status registers.” That is,
to find out the state of a peripheral device (for example, waiting for a card,
reading a card, or mutilating a card), the processor reads the status register
associated with that device. Various bits of the register have different meanings.
The processor forces the device to particular states by setting values in the
status register.

The card reader has four components:

The reader device takes the card punches and translates them to numeric
information usable by the rest of the system. We treat card reading as a
primitive that reads an entire card in a single operation.

The buffer register receives the numeric values from the card reader, one at
a time, and transmits them to the “outside world.”

The status register is a 16-bit word. Each bit of the status register can
represent some condition in the card reader hardware. Not all the bits in the
CRI11 status register are used. Table 8-2 lists the significant bits and their
interpretation. In Figure 8-8, the significant bits are highlighted.

The driver program controls the sequencing of the other components. The
driver program is software. This contrasts with the other components of the
reader, which are all hardware.

Figure 8-9 shows the net of processes and connections for the card reader.
In Figure 8-10, we redraw the connections between the card reader com-

Figure 8-8 The status bits.

CONCURRENT PROCESSES 97

Figure 8-9 The card reader net.

Figure 8-10 The flow of synchronization.

98 MODELS

Figure 8-11 The reader device state machine.

ponents to show the flow of synchronization, control data, and informa-
tion. The connecting links are labeled according to the variety of informa-
tion transmitted: pure synchronization lines are dotted, control lines solid,
and data lines double. The arrowheads show the direction of information
flow. The whole net has three communication lines with the external envi-
ronment: incard, which connects to the card reading mechanism; out, which
sends card values to the main computer; and enderr, which signals end-of-card
and errors.

The reader device is a six-state automaton. When it receives a synchroniza-
tion pulse (the 0-bit) from the status register (synchl), it responds by setting the
9-bit in the status register (upl, busy reading). It then inputs an entire card from
the environment (incard) and waits for a next character pulse from the driver
(synch2). It loops, sending characters to the buffer (val) at each next character
pulse, until all 80 characters have been transmitted. It then sets the 14-bit in
the status register (upl, ready for next card) and goes back to the synchl state.
Figure 8-11 shows the states of the reader device.

The program for the reader device is as follows:

reader-device =
{synch1:(®,
K(reader-device2))}

reader-device2 =

{upl:((9,1),
K(reader-device3))}

reader-device3 =
{incard:(®,
K(countsend(1)))}

countsend(j) =
{synch2:(®,
K((j=81) —
{upl:((14,1),
K(reader-device))},
{val:(change(c[j]),
K(countsend(j+1)))})))}

CONCURRENT PROCESSES

99

where change is a function that encodes a card column as an integer and c is a

card.

The buffer register is a three-state automaton. It simply loops between re-
ceiving a character from the reader device (val), getting a synchronization pulse
from the driver (synch3), and sending the character to the outside environment
(out). Figure 8-12 shows the state-transition diagram of the buffer register. The

equations that define the buffer are

buffer-register =
{val:(®,
An.{synch3:{(®,
K({out:(n,

K(buffer-register))}))})}

Figure 8-12 The buffer register state machine.

100 MODELS

Figure 8-13 The status register state machine.

The status register is initially prepared for any of three different interactions.
The driver can have an ask/ans dialogue with the status register, requesting the
value of a particular bit. The driver can set (or clear) either the 0-bit or 6-bit
in the status register, and the reader device can set either the 9-bit (indicating
that it is busy reading a card) or the 14-bit (indicating that it has finished and is
waiting). Figure 8-13 shows the states of the status register. The large left brace
indicates the possible indeterminate interactions. The defining equations for the
status register are as follows:

status-register =
status((0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0))

CONCURRENT PROCESSES 101

status(b) =

{ask:(®,

An.{ans:(b[n+1],

K(status(b)))}),

up2:(®,

Am.((m[1]=0 A m[2]=1) —

{synch1:(®,
K(status({(1, b[2], ..., b[8], 0, ..., 0))))}.

o status((0, ..., b[m[1]], m[2], b[m[1]+2], O, ..., 0)))),
upl(o,

Am.status({0, ..., b[m[1]], m[2], b[m[1]+2], ..., b[16])))}

Here b is a 16-bit vector (the register) and m is an ordered pair. Vector b’s
elements are indexed from 1 to 16 (not 0 to 15). The first element of m (m[1])
is a bit number (0 ... 15), and the second element (m[2]) is a set/clear (1/0 or
true/false) value.

The final component of the card reader is the driver program. The program
is a long loop. Most of the time it waits for an opportunity to read a card.
When the card reader is no longer busy and is “online,” the driver interrupt is
enabled and the reading process is started. Reading continues in the embedded
loop until the end-of-card message (or read error message) is received from the
status register. The driver program then sends a —1 to the environment on the
enderr line, disables the interrupt, and prepares to read the next card. Figure 8-14
shows this process. The defining equations for the driver program are as follows:

driver =
{ask:(9,
K({ans:(®,
At.((t=1) — driver, driver2))}))}
driver2 =
{ask:(8,
K({ans:(®,
At.((t=1) — driver, driver3))}))}
driver3 =
{up2:((6.1),
K({up2:4(0.1),
K(doio))}))}
doio =
{synch2:(®,
K(doio2))}
doio2 =
{ask:(15,

K(doio3))}

102 MODELS

Figure 8-14 The driver state machine.

doio3 =
{ans:(o,
At.((t=1) — endcard, doio4))}
doio4 =
{ask:(14,
K(doio5))}
doio5 =
{ans:(©,
At.((t=1) — endcard, doio6))}
doiob =
{synch3:(©®,
K(doio))}

CONCURRENT PROCESSES 103

endcard =
{enderr:(-1,
K(endcard2))}

endcard2 =

{up2:((6.0),
K(driver))}

The composition of these four devices forms the complete card reader device
card reader = reader-device || status-register || buffer-register || driver

where || is the “compose and restrict internal names” operator. It is possible to
prove that the driver correctly controls the other components of the card reader
(with respect to the appropriate specification).

Perspective

The Concurrent Processes model provides a formal semantics of concurrent com-
putation. Stripped of its formalisms, this model specifies explicit processes that
communicate bidirectionally and synchronously. Processes communicate over a
set of ports (effectively, channels). Each port has two sides (barred and unbarred).
Only processes seeking access from opposite sides of a port communicate. Proc-
esses in the Milne-Milner model can be dynamically created and destroyed. The
model uses lambda expressions to describe the functional ability of the processes.
Lambda expressions are used because they are the standard mathematical way
of expressing functions; they have a long-studied and well-understood semantics.

PROBLEMS

8-1 Change the register to respond to set with the last value of the register.

8-2 Can you change the register to respond to set with the value sent?

8-3 Give an expression that represents a general (n-ary) semaphore.

8-4 Complete the code of Clause in the theorem prover.

8-5 Model an unbounded buffer in Concurrent Processes.

8-6 Write a version of the elevator controller of Chapter 14 using the communication mecha-
nisms of Concurrent Processes. Which aspects of the elevator controller does the model capture?
Which aspects is it unable to capture?

REFERENCES

[Loveland 78] Loveland, D. W., Automated Theorem Proving: A Logical Basis, North-
Holland, Amsterdam (1978). This book is a detailed exposition on automated theorem
proving, with particular emphasis on resolution and its variations.

104 MODELS

[Milne 78] Milne, G. J., “A Mathematical Model of Concurrent Computation,” Ph.D. disser-
tation, University of Edinburgh, Edinburgh (1978). This is Milne’s doctoral dissertation,
describing much of the model. Milne presented the original card reader example in this
dissertation.

[Milne 79] Milne, G., and R. Milner, “Concurrent Processes and Their Syntax,” JACM,
vol. 26, no. 2 (April 1979), pp. 302-321. Milne and Milner present the definitive paper
on Concurrent Processes. This paper is formal and difficult to read. The register and
semaphore examples are drawn from this paper.

[Milner 80] Milner, R., A Calculus of Communicating Systems, Lecture Notes in Computer
Science 92, Springer-Verlag, New York (1980). CCS is another (and similar) attempt by
Milner to develop an algebra of concurrent communicating systems.

[Milner 83] Milner, R., “Calculi for Synchrony and Asynchrony,” Theoret. Comp. Sci., vol. 25,
no. 3 (1983), pp. 267-310. Milner presents a calculus for distributed computation based on
four combinators. This paper extends his work on CCS [Milner 80] to include synchronous
communication.

[Robinson 79] Robinson, J. A., Logic: Form and Function, North Holland, New York (1979).
Like [Loveland 78], this is a book on automated theorem proving. Robinson places less
emphasis on variations of resolution, and greater emphasis on the foundations of logic and
semantics. He provides many programmed examples.

[Smyth 78] Smyth, M. B., “Powerdomains,” J. Comput. Syst. Sci., vol. 16, no. 1 (February
1978), pp. 23-36. Smyth describes the mathematics of powerdomains.

